斯坦福发布人工智能十大趋势 中国大模型数位居世界第二

由华裔女科学家、“人工智能教母”李飞飞联合领导的斯坦福大学以人为本人工智能研究所近日发布了《2024年人工智能指数报告》。与往年不同,今年的版本在内容、规模和范围上都超过往年,反映出人工智能在人类日常生活中日益增长的重要性。新报告揭示了2023年人工智能行业的十大主要趋势,其中中国大模型数位居世界第二。

人工智能在某些任务上胜过人类,但并非在所有任务上。人工智能已在多项基准测试中超越人类,包括在图像分类、视觉推理和英语理解方面。然而,它在竞赛级数学、视觉常识推理和规划等更复杂的任务上依然落后于人类。

2023年主要国家机器学习大模型数

产业界继续主导人工智能前沿研究。2023年,产业界产生了51个著名的机器学习模型,而学术界只贡献了15个。2023年,产学合作产生了21个著名模型,创下新高。此外,108个新发布的基础模型来自产业界,28个来自学术界。

前沿模型变得更加昂贵。根据《人工智能指数报告》估计,最先进人工智能模型的训练成本已达到了前所未有的水平。例如,OpenAI的GPT-4使用了价值约7800万美元的算力进行训练,而谷歌的Gemini Ultra花费了1.91亿美元的算力。

美国领先中国、欧盟和英国,成为顶级人工智能模型的主要开发国家。2023年,61款著名人工智能模型来自美国机构,数量远远超过欧盟的21款和中国的15款。

目前严重缺乏对大语言模型负责任的可靠和标准化评估。人工智能指数的新研究表明,负责任的人工智能报告严重缺乏标准化。包括OpenAI、谷歌和Anthropic在内的领先开发公司主要根据不同的负责任的人工智能基准测试其模型。这种做法使得系统地比较顶级人工智能模型的风险和局限性的努力变得复杂。

生成式人工智能投资飙升。尽管去年人工智能私人投资总额有所下降,但对生成式人工智能的投资却大幅增长,从2022年起增长了近八倍,达到252亿美元。生成式人工智能领域的主要参与者,包括OpenAI、Anthropic、Hugging Face和Inflection,均进行了融资。

人工智能使工人更有效率,并带来更高质量的工作。2023年,多项研究评估了人工智能对劳动力的影响,表明人工智能使工人能够更快地完成任务,并提高他们的产出质量。

人工智能崛起推动科学进步的速度愈发迅猛。2022年,人工智能才被正式用于科学发现领域。然而,短短一年后,从优化算法排序效率的AlphaDev到革新材料发现流程的GNoME,我们见证了更为重要的、科学的相关人工智能应用的问世。

美国的人工智能法规数量呈现出急剧增加的趋势。在过去的一年和五年里,人工智能相关的法规数量显著增加。到2023年,人工智能相关法规从2016年的一项增加到25项。仅去年一年,人工智能相关法规总数就增长了56.3%。

在全球范围内,公众对人工智能的潜在影响有了更为深刻的认识,同时伴随着日益增长的紧张情绪。益普索(Ipsos)的最新调查揭示,过去一年中,认为人工智能将在未来三到五年内深刻改变其生活的受访者比例从60%跃升至66%。

THE END
免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
Baidu
map